Evolution of Conjugation and Type IV Secretion Systems
نویسندگان
چکیده
Genetic exchange by conjugation is responsible for the spread of resistance, virulence, and social traits among prokaryotes. Recent works unraveled the functioning of the underlying type IV secretion systems (T4SS) and its distribution and recruitment for other biological processes (exaptation), notably pathogenesis. We analyzed the phylogeny of key conjugation proteins to infer the evolutionary history of conjugation and T4SS. We show that single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) conjugation, while both based on a key AAA(+) ATPase, diverged before the last common ancestor of bacteria. The two key ATPases of ssDNA conjugation are monophyletic, having diverged at an early stage from dsDNA translocases. Our data suggest that ssDNA conjugation arose first in diderm bacteria, possibly Proteobacteria, and then spread to other bacterial phyla, including bacterial monoderms and Archaea. Identifiable T4SS fall within the eight monophyletic groups, determined by both taxonomy and structure of the cell envelope. Transfer to monoderms might have occurred only once, but followed diverse adaptive paths. Remarkably, some Firmicutes developed a new conjugation system based on an atypical relaxase and an ATPase derived from a dsDNA translocase. The observed evolutionary rates and patterns of presence/absence of specific T4SS proteins show that conjugation systems are often and independently exapted for other functions. This work brings a natural basis for the classification of all kinds of conjugative systems, thus tackling a problem that is growing as fast as genomic databases. Our analysis provides the first global picture of the evolution of conjugation and shows how a self-transferrable complex multiprotein system has adapted to different taxa and often been recruited by the host. As conjugation systems became specific to certain clades and cell envelopes, they may have biased the rate and direction of gene transfer by conjugation within prokaryotes.
منابع مشابه
Functional divergence and horizontal transfer of type IV secretion systems.
The type IV secretion system (TFSSs) is a multifunctional family of translocation pathways that mediate the transfer of DNA among bacteria and deliver DNA and proteins to eukaryotic cells during bacterial infections. Horizontal transmission has dominated the evolution of the TFSS, as demonstrated here by a lack of congruence between the tree topology inferred from components of the TFSS and the...
متن کاملEvolutionary Thrift: Mycobacteria Repurpose Plasmid Diversity during Adaptation of Type VII Secretion Systems
Mycobacteria have a distinct secretion system, termed type VII (T7SS), which is encoded by paralogous chromosomal loci (ESX) and associated with pathogenesis, conjugation, and metal homeostasis. Evolution of paralogous gene families is of interest because duplication is an important mechanism by which novel genes evolve, but there are potential conflicts between adaptive forces that stabilize d...
متن کاملThe mating pair formation system of conjugative plasmids-A versatile secretion machinery for transfer of proteins and DNA.
The mating pair formation (Mpf) system functions as a secretion machinery for intercellular DNA transfer during bacterial conjugation. The components of the Mpf system, comprising a minimal set of 10 conserved proteins, form a membrane-spanning protein complex and a surface-exposed sex pilus, which both serve to establish intimate physical contacts with a recipient bacterium. To function as a D...
متن کاملDefinition of a bacterial type IV secretion pathway for a DNA substrate.
Bacteria use conjugation systems, a subfamily of the type IV secretion systems, to transfer DNA to recipient cells. Despite 50 years of research, the architecture and mechanism of action of the channel mediating DNA transfer across the bacterial cell envelope remains obscure. By use of a sensitive, quantifiable assay termed transfer DNA immunoprecipitation (TrIP), we identify contacts between a...
متن کاملIdentification of a Novel Conjugative Plasmid in Mycobacteria That Requires Both Type IV and Type VII Secretion
UNLABELLED Conjugative plasmids have been identified in a wide variety of different bacteria, ranging from proteobacteria to firmicutes, and conjugation is one of the most efficient routes for horizontal gene transfer. The most widespread mechanism of plasmid conjugation relies on different variants of the type IV secretion pathway. Here, we describe the identification of a novel type of conjug...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 30 شماره
صفحات -
تاریخ انتشار 2013